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ABSTRACT

Perturbed acoustic propagation is considered between a point
source and an array receiver in which the perturbations are due to a
Garrett-Munk internal wave field. The resultant acoustic phase fluctua-
tions along the array are determined. Straight ray propagation is assumed,
and three array orientations are considered: broadside horizontal, end-
fire horizontal and broadside vertical. It is shown that for an acoustic
frequency of 150 Hz, a range of 50 km and a horizontal broadside receiver
separation distance (in the array) of 1 km, the rms phase difference between

the two receivers at 1000 m depth in the N. Pacific is typically 5?1 and in

€

the Arctic it is typically 2?, whereas in the N. Atlantic at the same
e
depth it is typically 50 °. These geographical variations are due mainly
4

to variations in the potential sound velocity gradient. Similar phase
differences occur for a vertical receiver separation of 50 m. The hori-
zontal receiver separation necessary to reduce the acoustic coherence to

0.5 for the same operating conditions is shown to be very large in the

N. Pacific (2 400 km) and Arctic (> 1000 km), but only 2.3 km in the

N. Atlantic.
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INTRODUCTION

Any system which makes use of phase comparisons in underwater
acoustic signals will ultimately be limited in its accuracy by the random-
izing effect of the natural state of motion in the ocean medium. In recent
years, this state of motion has been the subject of much research, parti-
cularly for those length and time scales than can be described as internal
waves. One of the results of this research is that there now exists an
analytic model than can be used to predict acoustic properties of the

ocean, such as the expected rms acoustic fluctuations, the coherence

lengths, frequency and wavenumber spectra, etc. The internal wave model,

known as the Garrett-Munk spectrum (Desaubies, 1976a and b), is empirically
based and has been subjected to some experimental confirmation since its
proposal (for a general reference see the collection of papers edited by
Briscoe (1975)).

If an acoustic signal is transmitted over a fixed path between
two points, the phase difference between the received and transmitted
signals will be dependent on a number of variables, for example: signal
frequency, path length, the total sound velocity structure, receiver and
source depth, etc. If the sound velocity structure is unvarying in time,
a signal at a given frequency will exhibit an unvarying phase difference.
I1f the sound velocity structure changes in time, the given signal will
exhibit varying phase differences, and the characteristics of the varia-
tion will be intimately linked to the characteristics of the velocity
changes. If the sound velocity changes are due to background internal
waves, they will be distributed along the entire acoustic path and the
resultant phase difference .. the receiver will be an integral of these

changes taken along the path. 1In the treatment given here the acoustic
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phase perturbation is defined as the extra amount of phase difference caused
solely by the presence of the internal waves.

The internal wave fieid is modelled stochastically, that is,
only expected values are known, and the internal wave.field at any given
instant is merely one unspecified realization taken from an infinite ensemble
of such realizations. The acoustic phase perturbation is thus a random
process and, therefore, only expected values can be predicted.

Two papers have recently been published that deal extensively
with this acoustic perturbation problem. They provide overlapping treat-
ments and so they will be discussed here together. The first is by Munk
and Zachariasen (1976), hereafter referred to as MZ, the second is by
Desaubies (1976a). 1In these papers, the authors have shown that for the
two-point fixed-geometry single-receiver acoustic transmission situation
referred to above, the expected rms phase perturbation caused by internal
waves is proportional to the signal frequency and approximately proportional
to the square root of the path length. The proportionality constants are
governed by parameters from the internal wave model. They have also shown
that the perturbations change very slowly in time; the frequency spectrum

of the phase perturbations is heavily weighted towards the inertial period

(15.7 hrs at 50°N and 12 hrs at 90°N).
For this single-receiver configuration then, and assuming no [
other perturbations are present, the received phase will appear to be stable
over short time periods (say % hr or less), although the value of the received
phase will be different from the unperturbed value by a random amount with
a root-mean-square that is governed by the internal wave field parameters
and details of the configuration. T

For an array receiver configuration and a single source, Figure 1,

the received phase at any single hydrophone will also appear to be stable




ARRAY
RECEIVER

INTERNAL WAVES ABSENT

ARRAY
RECEIVER

SOURCE

INTERNAL WAVES PRESENT

Figure 1. Schematic representation of the propagation
configuration.
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over short times but the difference in phase between two separated hydro-
phones will exhibit spatial variations which are caused by the spatial
inhomogeneities in the internal wave field realizations. The phase differ-
ence that exists simultaneously at spatially separated hydrophones will have
a mean-square (in the ensemble sense) that approaches zero at very small
separations, and generally increases as the separation increases.

If the joint probability density of phases at the two hydro-
phones is Gaussian, and the received amplitudes are unperturbed, the
coherence between the two received acoustic signals will be exp{-%62}, where
$* is the mean-square phase difference. Thus, the acoustic coherence will
be less than 0.5 whenever the rms phase difference is larger than 618"«

Of course, in a real propagation situation, the acoustic amplitudes are also
expected to be randomized by the internal wave field with the result that
the acoustic coherence will fall below 0.5 for smaller values of Y¢? than
67.4°. Unfortunately, the treatment of acoustic amplitude perturbations is
much more complicated than that for acoustic phases (see MZ who show that
diffraction effects must be included for the former but not for the latter)
and, in the interest of expediency, the analysis given in the following
section will treat ounly phase fluctuations. ‘

The purpose of the following analysis is to provide estimates of
the expected amount of rms phase difference for two receivers situated in
typical N. Pacific, Arctic and N. Atlantic conditions. Three array orien-
tations will be considered: endfire horizontal, broadside horizontal, and
broadside vertical. The numerical estimates are obtained by using straight

ray approximations and the Garrett-Munk spectrum.

The receiver separation necessary to reduce the acoustic coherence

to 0.5 (i.e. rms phase difference = 67.4°) is calculated for the above




conditions for a horizontal broadside array at a range of 50 km; and predic-—

tions are also made (in Appendix A) using a variant of the Garrett-Munk
spectrum due to Desaubies.

Surface and bottom reflections are specifically excluded from
all calculations.

FLUCTUATION MECHANISM

There are two predominant mechanisms by which internal waves can
affect acoustic signals: (i) raising and lowering of surfaces of constant
sound velocity, and (ii) Doppler shifts and advection due to fluid particle
flow. It 1s shown by MZ that the former is an order of magnitude more
important than the latter so only the former will be treated here. The wave

equation for sound propagat. n in the absence of advection is

: |
2R . 295 a0, (1)

and in the presence of internal waves (or any perturbing agency)

& (c (z) + 6c(x,y,z,t)) & ctlz) + 2c (2) 8¢
o 0 o

I

c;(z) 1« 26c/co) (2)

In these equations p is acoustic pressure, ¢ is sound speed and <y is
unperturbed sound speed.
It is shown by MZ and Desaubies (1976a) that the effect of the ;

inhomogeneities, 8c, on the phase of p can be calculated by ray tracing or L

ray timing techniques (at least for paraxial rays).
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From the ray model, the travel time T from source to a single

receiver is given by

or
R
PR | f 25 av. (3)
C [a
o (o] o

In expressions (2) and (3), the 8-operator refers to differences
between different realizations of the acoustic medium, and the integrals are
taken along the mean ray path. The phase § associated with 8T is wéT where

w is the radian acoustic frequency, therefore

w s Sc
F==3 U/P () dr. 4
oJo o

The sound velocity perturbations are caused by vertical shifting
of isovelocity contours, therefore it is expected that éc will simply be
proportional to the product of the internal wave amplitude ¢ and the back-

ground sound velocity gradient; that is

ac
)

s (5

I
Oln

e] o

Although this relation is conceptually correct, it is shown by Munk (1974)
that the gradient aco/az should actually be replaced by the gradient of

potential sound velocity acp/az where cp does not include pressure effects

or the effect of the adiabatic lapse rate.

el et o a2




The corrected version of (5) can be substituted in (4) giving

i R /ac "
TF(R)= - —P-c o r (x€r)) dr (6)
oJ o o

The mean-square phase difference between two spatially separated

| receivers is given by
o= <[B(R,) - T(R1)]?>,

| which, by (6), becomes

892£;l) ac (;2)

~

W g £
v e F ¢ 3z 9 K g%, Jelx,) > dr,dr,
o o &
i
i dc_(x,) ac (xy) BN 3
| +[/ & gz c gz < elxy)e(x,) > dr,dr, )
& o © o
F’ RiR> 4 &
) dc_(x;) 3c_(x,)
| ’ y . ;
| & c dz c 3z < ¢(x,)e(x,) >dr,dr,
‘ ; :
oo
In order to determine typical values of ¢?, several assumptions ;

will now be invoked, namely, straight acoustic rays, constant acp/coaz, and
> >

stationary < z(x,)z(x,) > given in terms of the Garrett-Munk spectrum. The

assumption of straight acoustic rays can be relaxed somewhat. Desaubies

I (1976b) shows that ray curvature per se is mostly unimportant in treating

phase perturbation; however, the assumption of constant Bcp/coaz and

uniform <z?> (in depth) are important and are not trivially removed. Further

comments are given in the discussion.




The derivation of the final expression for ¢? is given in

Appendix B; the result is

[¢]
¢2 0 e A(907) P c T (8a)

A " C
acoustic o

i ac ? n : o :
02 = (==)2(—E=)2 = g b2(=2) 22(90°) {ean™"WTo 1 o T
Co C 3z ks n M
A R
T X(e,37 x(900y?"201202) (8b)

where the terms E and b come from the internal wave spectrum, R is the
median source-receiver range, n_ is the Brunt-Vaisala frequency just below
the thermocline, n is the Brunt-Vaisala frequency at the transmission depth,
u is n/nin, n.o is the local inertial frequency, A is the receiver sepa-
ration distance, 6, is the angle between the array axis and the median
propagation direction, 6, is the angle between the array axis and vertical,
and A(6,) is the relevant internal wave length scale, which, because of
vertical anisotropy in the Garrett-Munk spectrum, is dependent on the angle
6,. The function T contains the entire dependence of ¢? on receiver sepa-
ration, A, receiver orientation, and source-receiver range, R. This
dependence is illustrated in Figure 2 for a horizontal array in endfire
orientation (6,:00, 82=9O°), in Figure 3 for a horizontal array in broadside
orientation (e,=9o°, 62=900), and in Figure 4 for a vertical array in broad-
side orientation (9,:900, 92=9O°). In Figure 2 there is no range dependence;
each curve refers to a different value of u(:n(z)/nin) as indicated. 1In
Figures 3 and 4, AH is 1(90°), AV is 2(0%), each group of curves pertains

to a different range (log R/)\H is given for each group), and within each

group, each curve pertains to a different u (as shown on right side). For
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Figure 2. Horizontal array, endfire. The function T is used
in Eqs. (8a) and (8b). Seven curves are shown; each
pertains to a different value of u, and the smallest 1
and largest p-values used are indicated on the right.
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Horizontal array, broadside. The function T is used

(8a) and (8b). Values of log,,(R/Ay) are
given for each group of curves.
seven curves are shown,
of

in Eqs.
Within each group,
each for a different value
iy, and the smallest and largest u-values used are
The
indicate separations at which the acoustic
phase correlation is 0.5 (not to be confused with
acoust it figﬂi; correlation).

indicated on the right for one of the groups.
crosses
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Vertical array, broadside. The function T is used
in Eqs. (8a) and (8b). Values of log, s (R/xy) are
given for each group of curves. Values of u are

given on the right for each curve.
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small A/X(6), T is proportional to A? for the horizontal endfire case, and
porportional to 4% In A for the other two cases. For very large 4/A(6), T

Y g ’
is ultimately proportional to AlnA for the horizontal cases and proportional

to A far the vertical case.

The internal wave length scale A(6) is given, for the horizontal

and vertical array cases respectively, by

tan-l'u s A= 1P

Il = (2= 1) 212

In (8b) the parameter E is a dimensionless '"universal constant'; it repre-
sents the overall internal wave spectral level and it has a value of

5.3 x 10-5. The parameter b represents the exponential fall-off rate at
large depths for the mean Brunt-Vaisala frequency. In the Garrett-Munk
internal wave spectral model, the Brunt-Vaisala frequency n(z) is taken to

be

n(z) = n e_z/b
o

in the main body of the ocean (i.e. below the thermocline).
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It can be seen from Figures 2 to 4 that the rate of increase of
T with A begins to reduce near A ® A(6) (for fixed R/XH'. This occurs
because the correlation between the phase parts of the signals at the two
receivers, which is almost unity for A < A(6), begins a more rapid decrease
as A increases, and, as A becomes iarger iian A(6), the correlation becomes
significantly iess than unity. The phase correlation distance, that is, the
value of A at which the correlation of the phases is 0.5, is not reached,
however, until A/A(8) has increased to the value indicated by the cross
(for each R/AH curve).

For the vertical array configuration, T actually decreases as 2
increases, for A/Av,z 1. More specifically, this behaviour exists for a
particular range of ray angles, measured with respect to the horizontal,
namely 10° £ |ray angle| £ 85°%, or 1 % (A/R)(AH/AV) < 100. The reduction
occurs because XH is significantly greater than Av. For almost horizontal
propagation, the phase coherence length is controlled by the horizontal

internal wave coherence length A As A increases with R fixed, the

e
effective coherence length tends towards Av’ i.e., it reduces significantly,
with the result that significantly more of the phase fluctuation cancels
itself out when integrated along the total ray path. TFor A >> A(8), T again
increases, but this is because in this regime the actual propagation range
Ros 28, significantly increases with A, along each constant R/xH curve,
and it more than compensates for any reduction tendencies.
The parameter A(6) thus serves to divide the separation dis-

tances into two regions: one region includes the very tightly correlated
separations where T is small but increases rapidly; the other includes the

more loosely correlated separation where T is more nearly its maximum and

increases much more slowly (not including very large A).

- a————
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The range dependence of T can be summarized as follows: for
the endfire case T is range independent; for the horizontal and vertical
broadside cases, T is proportional to R InR for R and 4 + O, it is range
independent for A/A(8)+ =, and it is proportional to R between these two
limiting cases. For the endfire case the two rays are identical between
the source and the nearest receiver and thus the phase difference generated
over this part of the propagation path is zero. The entire phase difference
is due only to propagation between the two receivers and hence is indepen-
dent of the source-receiver distance. For the other two cases the range-
independence at very large A/A(8) occurs because A >> R is the regime and
so the total propagation path length /E?:_gzy is virtually independent of Kj;
in the more interesting regime of small A/A(8), the R ln R or R-dependence
is due to the detailed form of the Garrett-Munk internal wave spectrum.

For A/x(6)x 1, Figures 2 to 4 show that

0.4 A/AH for endfire horizontal,
T & O.A‘IAR/)\H for broadside horizontal, (11)
A R & .
0.4 = 5 for broadside vertical.
v H

By using (11) for this range of A, and by taking the square root of (8b),

it can be seen that the rms phase difference, rms ¢, is proportional to the
potential sound velocity gradient Scp/ac, the acoustic frequency fa(rw/lw',
the square root of the oceanographic length scale b and either A or VAR

/2b

. ; : ) . z
depending on the configuration. It is also proportional to the factor e

and a term dependent only on u. This is summarized as follows: for

A/r(B) = 1 and ld/co = Aa, the acoustic wavelength,




R

<55

rms ¢ &
A
T; endfire horizontal.
x/2b b 2% 2 Iy — 2l
e e B 2 tan =1 = Yyu?- 1/u — broadside horizontal.
o Aa
=
ﬁﬂ AR broadside vertical.
Ay Pa

(12)
where rms ¢ is given in degrees. The product of the first three terms in
; 3c /E ; :
€12) is = p E, where ¢ is the local rms internal wave height,
rms — rms
o
and it has been shown elsewhere(e.g. see Desaubies, 1976b Eq. 11 or MZ Eq. 89)

ac
that although ¢ is expected to increase with depth as ez/2b, T
rms

Cc 3z
-2z/b O

expected to decrease with depth as e (at least for the profile given in

10). This leads to the conclusion that rms ¢ is expected to decrease with

depth approximately as e_l'szlb

« Thus, for straight ray propagation, more
scattering by internal waves should occur for shallow paths than deep paths.
Curved rays are treated for a single receiver by MZ who give an
exhaustive treatment of scattering in convergence zone propagation (excluding
reflections). They find that most of the scattering occurs near the apex
of the ray paths. The reason again is that Cacp/az follows a similar
exponential depth-dependence as the Brunt-Vaisala frequency (Eq. 10) and so
the internal waves produce more scattering (possibly orders of magnitude more)
near the thermocline than in abyssal regions.
Desaubies (1976a) has provided an interesting and very attrac-—
tive variant of the Garrett-Munk spectrum. He shows that the three parameters

E, N0 and b can be reduced to two parameters r and t (using his notation)

with

PPN S
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2

&= 3/02bn ) . (14)
o

With these definitions, the dependence of n? on z need not be exponential
but may remain unspecified and completely general. The scaling parameters
in the spectrum cease to be E, nos N and b and become r, t (neither of
which is dimensionless), n and the local frequency n(z). He further shows
that the existing data strongly suggest that r and t are universal constants
with values of 300 m?cph and 3.10_4 (cycles per meter) /cph respectively.
This is equivalent to fixing the values of n, and b, by equations (13) and
(14) to be universally 4.42 cph and 1132 m respectively, and replacing ez/b
by 4.42/n(z) where n(z) is left unspecified. In Appendix A, Equations (8b),

(9) and (12) are rewritten using the r, t scaling.

TYPICAL OCEANIC PARAMETERS

Numerical estimates will now be obtained for four different
oceanic regions, see Figure 5; the Gulf of Alaska (North Pacific), the
Newfoundland Basin (North Central Atlantic), Robeson Channel in April (82°N,
60°W in the Eastern Arctic), and the Canada Basin in April (780N, 130°W in
the Western Arctic). In each region estimates are obtained for an acoustic
frequency fa of 150 Hz, a range R of 50 km and a hydrophone spacing of
either 1 km for the horizontal separations or 50 m for the vertical sepa-
ration.

Internal wave measurements in the temperate oceans indicate that
E = 33 10—5, and, in the absence of Arctic measurements, this value will be
used for the Arctic case as well. Table I contains all the numerical values
that have been used. The Gulf of Alaska and Newfoundland Basin data were

calculated from temperature and salinity profiles published by Hashimoto

(1968, his regions D and P respectively). At the chosen depth (1000 m) the
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Figure 5. The solid regions indicate the locations of the four
numerical examples: Gulf of Alaska (North Pacific),
Newfoundland Basin (North Central Atlantic), Robeson
Channel (82°N, 60°w), and Canada Basin (78°N, 130°W).
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profiles are independent of season. The Robeson Channel data were calcula-

ted from temperature, salinity and density profiles published by Sadler

(1976, his Figure 23) and the Canada Basin data were taken from Herlinveaux

(1963, Station 1, Camp 1). All n(z) profiles were calculated using the

formula n*(z) = (g/¢)(3¢/3z) - g?/c?*(z), and in situ density values were
calculated using the equation of state given by Chen and Millero (1976).

The values of ng and b given in Table I were obtained by fitting (10) to

the relevant profile; values of no in Table 1 were then calculated from (10)
using n s b and the relevant depth, z. The sound velocity profiles were
calculated using Wilson's equation; the potential sound velocity profiles
were calculated by first determining the local adiabatic sound velocity
gradient from the local adiabatic lapse rate (Fofonoff, 1962) along with

the local salinity gradient and 0.1% of the local pressure gradient (this
very small correction more properly treats the internal wave pressure field),
then integrating the adiabatic profile from the surface down and finally
subtracting the resulting values from the total sound velocity. Gradients
in the potential sound velocity were obtained by numerically differentiating
the final profile with respect to depth.

The rms phase fluctuations and the internal wave length scales
calculated* from these data are given in Table II1. The most striking result
is the comparatively large phase instability estimated for the Newfoundland
Basin. It is a direct result of the relatively large potential sound
gradient existing in that region which in turn may be due to its more

southerly location. The other estimates are more uniform, with the Arctic

Values equivalent to Table II, but using Desaubies' modified scaling

are given in Appendix A.
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TABLE 1

OCEANOGRAPHIC DATA USED IN THE NUMERICAL EXAMPLES

g e e —————————

Region and Depth b(m) ;E%; (m-1) co(m/s) no(cph) n(cph) nin(cph)
Gulf of Alaska 1900 | -3.51 107% | 1477 2 1.18 T%T7
(1000 m)
Sewtoundland Basin | 2200 | ~41.5 1070 | 1501 3 1.90 | T
(1000 m)
RBobeson Chanuel 86 | +3.95 1070 | 1453 30 0.90 | T
(April, 300 m)
Canada Basin 1000 |-1.53 1070 | 1466 2 0.74 1;.0
(April, 1000 m)
TABLE 11

RESULTS FOR A RANGE OF 50 KM, AN ACOUSTIC FREQUENCY OF 150 HZ AND A

RECEIVER SEPARATION OF EITHER 1 KM (HORIZONTAL CASES) OR 50M (VERTICAL CASE)

Horizontal Broadside
rms ¢ = <[¢(R,)-0(Ry)]?>* % i
i H

Ragion, and, Depch Fndfire  |Broadside | Broadside '

Horizontal |Horizontal | Vertical
Gulf of Alaska (1000 m) 145" 4.6° 3.9° 3.0 km | 340 m
Newfoundland Basin (1000 m) 20° 53° 65° 4.7 km | 370 m
Robeson Channel (April 300 m) 0.31° ol 0.71° | 1.9 km | 300 m
Canada Basin (April 1000 m) | 0.40° B 0.86° | 1.6 km | 290 m

e ———————_—C




being more stable and having somewhat shorter internal wave length scales.
The increased stability in the Arctic is due to weaker internal wave acti-
vity, as predicted by the Garrett-Munk model; the gradients of Cp are, in
fact, almost the same as the Gulf of Alaska value.

Under the assumption that the internal wave statistics are
Gaussian, the acoustic signal coherence between the two receivers drops to

0.5 when rms ¢ reaches 67.4° (keeping acoustic amplitudes fixed). Figure 6

duan

illustrates the dependence of receiver separation on horizontal median-ray

range for an acoustic signal coherence of 0.5 for each of the four oceanic
regions. Only horizontal, broadside separation is shown, and, again the
frequency is 150 Hz. In the N. Atlantic, short to moderate ranges produce
a coherence of 0.5 (e.g. 50 km range, 2.3 km separation), in the N. Pacific
the ranges and separation are considerably larger (e.g. 60 km range and

30 km separation), and in the Arctic the range and separation are so large

that they are probably outside the framework of this analysis.

DISCUSSION AND CONCLUSIONS

Internal waves cause phase decorrelations between signals
transmitted by a single source and received simultaneously by two separated
hydrophones. The rms phase difference is a rapidly increasing function of
the separation distance if the separation is less than the internal wave
length scale, 2 to 3 km for a horizontal array or 350 m for a vertical
array*. The rms phase difference increases more slowly for greater sepa-
ration distances. At 150 Hz and 50 km range, the rms phase difference is
expected to be quite small for both the Arctic and the Gulf of Alaska, but
it is expected to be much larger in the Newfoundland Basin, mainly because

* Using Desaubies scaling, these numbers become 3 to 4 km for a horizontal

array and 300 to 700 m for a vertical array.
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Figure 6. Horizontal broadside receiver separation vs. range
for acoustic coherence of 0.5 at 150 Hz.




the product of the potential sound velocity gradient and the rms internal
wave height is much larger there than in the other regions. If the
frequency is increased, the rms phase differences will increase propor-
tionately; if the range is increased, the rms phase differences will again
increase but only as the square root of the range (approximately). 1In
either case, the internal wave length scales will increase. For conver-
gence zone propagation, it has been shown elsewhere that most of the phase
difference is produced at the shallowest parts of the ray paths.

In order to provide an appreciation for some of the effects of
these phase perturbations, three very simple calculations have been made,
each using a horizontal broadside array in the Newfoundland Basin. The
three calculation are: array gain loss, beam steering error, and range
error using wavefront curvature estimates. For an array with M hydrophones
operating in a non-perturbed medium, the array gain in dB is 10 log(M) if
the signal is perfectly coherent and the background noise is incoherent
between hydrophones. The gain is significantly reduced in the presence
of phase perturbations if the array is much longer than the acoustic cohe-
rence length as given in Figure 6. 1In the present case, internal waves
reduce the gain by 3 dB for an array length of approximately 5 km*. For

larger arrays, the reduction is more dramatic, in fact, the gain ultimately

becomes independent of array length. It should be noted that this loss

is frequency and range dependent; the loss will increase as the range
increases and decrease as the acoustic frequency decreases. It should also
be noted that 'approximately 5 km' is only coincidentally the same as the

* For a horizontal endfire array the necessary array length for 3 dB loss

is approximately 12 km; for a vertical broadside array, it is approximately

250 m.




the internal wave coherence length, 4.7 km. The beam steering error is
very small. Even if only two hydrophones are used, the rms steering error
is less than 0.1° for a hydrophone separation greater than 700 m, and the
error decreases as the separation increases. It is expected that less
error would result if a statistical estimation method were employed using
more than two hydrophones. This error is frequency independent and it
increases approximately as the square root of the range. The range esti-
mation error using wavefront curvature is also frequency independent and
decreases as the hydrophone separation increases; however, it increases as
approximately the 3/2's power of the range. At least three hydrophones are
necessary to form the estimate, and, for the present case, with equal
hydrophone spacings of 0.5 km, the rms range error using only 3 hydrophones
is 15% of the range. If more than three hydrophones are used with a
statistical fitting technique, this error will probably decrease.

The model that has been presented here is highly simplified and
rather loosely applied, partly because it assumes that the Garrett-Munk (or
Desaubies) internal wave spectrum applies equally well everywhere. There is
evidence that it applies in the temperate oceans (Desaubies, 1976a); as yet
no evidence has been published concerning its applicability in the Arctic.
The other important simplification is that the potential sound velocity
gradient and the rms internal wave height are depth-independent. More

2‘;2

is
H “rms

specifically, the assumption is that the product (Bcp/coaz)zk
constant along an acoustic ray, and, for medium to long ranges, this is
equivalent to the previous statement. The variation of this product is

largely controlled by the term (acp/az)z/n(z) and this in turn is controlled

by the local potential temperature gradient and the local salinity gradient.




Munk (1974, his equation (10)) shows that acp/az and n?(z) are proportional;
he also shows that the '"constant'" of proportionality is a function of the

Turner number, that is, a number which is proportional to the ratio of the

local salinity and potential temperature gradients. The term (Bcp/az)z/n(z’

can therefore be expected to vary with depth and with geographical location.
As shown earlier for the Garrett-Munk profile, it varies approximately
with depth as e_Jz/b, and from this it can be seen that it reduces by a
factor of 20 if the ray depth increases by an amount equal to b. This
reduction factor will be at least partly offset by the fact that the rays
must necessarily be non-horizontal over part of the path, probably that
part nearest the surface, and thus for the "horizontal configuration' cases,
scattering will be partly due to the vertical structure of the internal
wave field at depths when the vertical structure is strongest. This struc-
ture possesses shorter coherence lengths and can produce much larger phase
differences than the horizontal structure (c.f.Table II and note that the
vertical receiver separation is only 50 m whereas the horizontal receiver
separation is 1000 m). The overall effect, then, of this simplification
is in fact unknown, but it is expected that it will result ir estimates of
¢2 that are too large.

Removal of other simplifications in the work presented here (e.g.
only three array configurations) or extensions to other geographical regions

could be done straightforwardly.
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APPENDIX A
e DESAUBIES' SCALING FOR THE GARRETT-MUNK SPECTRUM

Using Desaubies' scaling, Eq. (8b) becomes

2 9C

2 A P ya 2¢ Oyy2 FLiom /2

= (=) (et =907 ) PR Cean Yt~ 1 Mt L/yRE, (A1)
o o

or, with y = ® and r = 300 m?cph,

ac AH T
6235 (z;%;) K; 5 degrees (A2)

rms ¢

where T =T at p = », n is expressed in cph, and SI units are used else-
@

where. Also, from (9a) and (9b)

1 tan—l /uz_ 1 _vuz_ 11‘-\2
>‘H * stnin T (T2 0T~ ’ (A3)
1 1
A = — =
v 2ntnin u 5

With u >> 1 and t = 3 10-'4 (cycles per metre)/cph,

>
1l

654.5/(nin In u),

>
Il

530.5/n :

|
Table Al shows the results equivalent to Table II but calculated 1
|

using the local measured value of n(z) and using (Al, A3 and A4). The main

difference from the Table II values occurs for the Arctic case; Desaubies' 1




scaling predicts more phase fluctuation and longer internal wave length
scales than the Garrett-Munk scaling. 1In fact, according to Table Al, the
Arctic and Gulf of Alaska display essentially the same degree of instability.
The Newfoundland Basin is again predicted to be the most unstable but this

time with the shortest vertical internal wave length scale instead of the

longest.




TABLE Al

DESAUBIES' MODEL - Phase difference for a range of 50 Km, an acoustic fre-

quency of 150 Hz and a receiver separation of either 1 km (horizontal case)

or 50 m (vertical case).

Horizontal Broadside !
rms ¢ =<[¢(R,)-0(R,)]?>

" A A

Region and Depth n(cph) Endfire Broadside |Broadside R ¥
Horizontal |Horizontal |Vertical

Gulf of Alaska 1.20 §. 37 3.9° 3.5° 4.0 km |450 m
(1000 m)
Newfoundland Basin| 2.55 L0 3 31° 39° 3.6 km [280 m
(1000 m)
Robeson Channel 1.97 P t® 3.4° 2.0° 3.7 km |590 m
(April, 300 m)
Canada Basin .66 .76° 5,32 1.1o 4,0 km (720 m

(April, 1000 m)




APPENDIX B
MATHEMATICAL DETAILS LEADING TO THE FINAL EXPRESSION FOR ¢?
In Eq. (7) on page 6 the term <c(;,)((;2)> is the correlation
function, RC' of the internal wave spectrum. This in turn is the Fourier
transform of the power spectrum in wave number space, and it can be shown

that the slant range correlation is given by

n(z) %
R (H,V) / f da Z? E(a,w) cos[ZnaV( T ] 98 (2maH) (B1)

Sk wé= n? n,
where Z¥ = b'n  ——r—, E(a,u) = % EAQ) ——H— ., a() = (/)1 Y7
2
w(e®~ n? Ja,
P .
A= ala, a, = (3/2n0b) Ywi- n;n, H = horizontal component of x,- x,, V is

. i b .
the vertical component of x,- x,, and a is expressed in cycles per metre
(see Desaubies 1976a, Eq. 10, and note that RC(H,V) as given in (B1) is the

same as hlsj. dw MSC(w) MS(w)). By substituting this expression in (7) and
ac

taking the gradient E—%; outside the integral signs (because they are assumed
o

constant over the propagation path), the mean-square phase difference becomes

R,
2 ac /—___
$ 6 )i B J/F ' t/r s J/ﬂ
L coaz i

(B2)
3n, T,
V "ui- x2 u)Jd ( - ;" H "x’= 1 u)

R,R cos (

nob o o
- ﬂ dr,dr, T,




In this expression, V and H are function of r, and r,, but their functional

forms are not necessarily the same for each of the three double integrals

i

:

E in ry, r,. For the horizontal endfire configuration, they are all the same:

]

E | V=0,H=|r-r,|, withR, =R - A/2 and R, = R + 4/2; however, for the

E ! horizontal broadside configuration, V= O, H = r, - r, for the first two

;

i integrals and H = "{(r,- r,)? + (r,+ r,)2 A2/4R2}/{1 + A2/4R%} , with

f

E ., = R, = YR*+ A?/4, where A is the hydrophone separation distance. For
the vertical broadside case, again the first two are the same,

t g

| ;

F V=2% |r,+ r;| &/ YR*+ 8%/4, H = |r,- r,|R/ YR*+ 4%/4, and the third is

\Y

Il

(A/R) (r,% % Y(r,- r;)% + 2(r? - r2) 8%3/4R*+ (r, + r,)? A*/16R")

X(1 +A2/4R2)_3/2, B = (r,0%/2R% * "((r,- r )2+2(r2~ r2)a* [4R>(r,+ r, ) A /16K)
] X(1 +A2/4R2)-3/2, with R, = R, = YR*+ A?/4. The general form given in (B2)

can be further simplified by replacing Jo(z) with 2/m 0"/2

cos(zsine )de,
The two cosine terms have arguments that are linear in u and they can be

combined. The integration in u can be carried out with the help of the

i form‘ﬂa.!: du cos(ua)/(1 + u?) = n/2 e"la':

. R _R: R4R
wz o€ 2 v h %=1
2 = = (c_gz)z - EbZ(__n_ = dx R +1 -2 dr,dr,
o o 1 0

‘ -3mn
U i s ——
E x f : dege i ;_nlv '~ x* + H /x*- 1 sinog| (B3)
o
i 0
-3mn,

——;—%ﬂlv AT R sinelz]

¢ €

! In all cases, the integrals in r, and r, can be carried out, but, because

of algebraic complexities, only the horizontal endfire case will be shown

here. For this case, V = O and dr, dr, can be converted to dr dH with



. appropriate sets of limits. The integrals can then be done by parts and

e the final result is
n/2 u
2
ot Bl Ll et 2
‘o x¥(x%- 1)?% sin?e6
-3 (B&)
| - AVx%- 1 sin@ 31rnin s
{ xje o # S AVXx*— 1 sin® - 1
" .

The combination of parameters nob/31rnin is proportienal to AH (see Eq. 9a),

and, in the limit A + o, the double integral becomes % A? {tan 'Vn?- 1

- Yu?- 1/u’}. Introducing these terms explicitly into (B4) produces
' o iy <—2->’ £ Eb’(n—q) A2 {tan”'VUTo 1 - /3T 2 (B5)
L c; c 3z’ n ne L
5 /2au " ﬁ%— P(u)"x*- 1 sin®é P
5 de dx - I e H At P(u)"x*- 1 sinf -1
4 1 PR(u)x?Cx?= 1) "sinte H
T=
tan” 'Yu?- 1 -Yuio 1/t (B6)
P(p) = % (tan™ ' "wi- 1 <u71/u?)/(lny = (%= 1)/2u?) (B7)

The transformation just introduced, and the resulting equation (B5), are
also valid for the general case. For the endfire configuration, it can be

seen that T is independent of range, and, as A=»o, T*%(A/AH)Q, independent

of u. (As A+o, T+ (%% In u) %— 1n-%—.)
H H

In general, the rms internal wave height Song W0 be obtained

from (B1) at H = V = 0O:




n(z) _

B = & (0,0) =3/:m'/ da 27 E(a,w)%%

oy
|

rms

in

1
{tan-l TR e l/u’}]

i

n
LEb2 =2
n

ERLE

Also, w/co = 2“/Aacoustic'
tions, and the result is (8a). The general form of T can be obtained by

comparing (B5) and (B3):

2 R,R, n/2

—

(B8)
v v x* H e
-]— 1-=% - — P(n)”"x*-1 sind|

) =
e )‘v ¥ )‘H }]}/{tan 1/“2_ { a¥nio l/uz}

The functional description of T in (8b) is equivalent to (B8).

Eq. (B5) can be rewritten using these defini-

R,R
u
2 ’x2- 1 dr,dr de -|¥- 1-x?/u? + %‘ P(u)"x*~1 sinb]|
= dx ) = —L—z-)‘z e = H
1 H
(6] (¢]




